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The ultimate goal of the authors is to apply inverse problem techniques to image
land mines using an electromagnetic signal originated by ground penetrating radar.
Specifically, the intention is to use the recently developed elliptic systems method,
which has been successfully applied by these authors to the problem of imaging
biological tissues using lasers. As the first step it is necessary to develop a fast
and accurate numerical method for the solution of the forward problem to simulate
data for the inverse problem. The main challenge is the requirement of solving a
Helmholtz-like equation fohigh frequencies which is excessively time consuming
using standard direct solution techniques. A novel accurate and rapid numerical
procedure for the solution of this equation is described in this paper. The kernel of
this algorithm is a combination of GMRES and a carefully chosen preconditioner, the
solution of which is found using a fast transform method. The extended problem of
solving Helmholtz-like equations for many frequencies is also considered. Numerical
results for realistic ranges of parameters in soil and mine-like targets, the investigation
of the impact of the size of the truncation region on accuracy, and the sensitivity of
detector readings to changes in the media are presenteohoo Academic Press
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1. INTRODUCTION

The goal of this paper is to describe a novel and effective numerical method for t
forward solution of high frequency electromagnetic wave propagation. This method v
be used later by the authors to computationally simulate data for the solution of the inve
problem of imaging mine-like targets using the elliptic systems method [10, 19, 20]. Th
the solution of the forward problem presented in this paper is a necessary prelude to
future solution of a related inverse problem.
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The problem of imaging land mines is of great significance. Handheld ground penetrat
radars (GPRs) represent a non-expensive hardware device for this purpose. A prine
difficulty of GPRs, however, is linked with a high percentage of false alarms, as well
false negatives; the latter especially relates to plastic mines.

Land mines are modeled as small abnormalities imbedded in an otherwise uniform
dia with an air—ground interface. These abnormalities are characterized by the elect
permittivity e and the conductivityr, whose values differ from those of the host media
The inverse problem consists of the determination of perturbationsmio, using mea-
surements of output electrical signals at a number of angular frequenaresat a number
of detectors (i.e., antennas) located near the ground surface. These perturbations c
electrical parameters will be used to characterize both locations of mine-like targets an
differentiate mines from clutter.

However, asis always the case ininverse problems, itis first necessary to solve the fon
problem in order to simulate the data for the inverse problem. Two important requireme
for the forward solver are: (1) it should be accurate, and (2) it should be fast. The importa
of the second requirement is due to the practical necessity of conducting a large numb
numerical tests of the inverse algorithm. The main difficulty in solving the forward proble
is that it must be solved for large values of the angular frequencies, i.e., for small w:
lengths. Thus a large number of grid points must be used. In this paper we presentar
numerical method for the solution of the forward problem, which satisfies the above t
requirements.

The problem considered in this paper is to compute the numerical solution of t
Helmholtz equation

Vau+kKx, yyv=1Ff, inQ (1.1)
with the Sommerfeld-like boundary conditions
vy —ikv =0, onog, (1.2)

whereQ = {—a < x, y < a}; andk?, v, andf are complex valued functions. Equation (1.2)
represents an absorbing boundary condition which allows normally incident waves to [;
out of Q transparently. It is implicitly assumed that the supportfdies well inside the
interior of €.

If the problem is discretized using a second order centered finite-difference scheme
regular mesh, the resulting linear system of equations has block tridiagonal structure. -
matrix is neither positive definite nor Hermitian. Hence, most iterative methods either f
to converge or converge too slowly, which is impractical. Concerning the other approac
for the solution of the problem (1.1)—(1.2), we refer to Bayisal. [1] for a preconditioned
conjugate-gradient algorithm, Despres [7] and Kim [17, 18] for a domain decompositi
method, and Douglaat al. [9] for an ADI algorithm.

The application of multilevel methods suffers from the requirement that the coarse mes
used must be fine enough to accurately represent the solution; see [3]. On the other
the solution of this problem by a direct method based on Gaussian elimination requ
a prohibitive amount of additional storage and computer time and thus has limited
The most promising results in the solution of a similar problem have been obtained
preconditioned Krylov subspace methods [12, 14, 16]. In this paper we generalize s
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approaches developed for the Helmholtz equation with constant coefficients by Ernst
Golub [14] and Elman and O’Leary [12]. In these papers the authors derived an excell
preconditioner by replacing the Sommerfeld-like boundary conditions with Dirichlet ¢
Neumann boundary conditions. They presented numerical experiments which demonstt
that their preconditioner had good convergence properties. However, their problem, un
the one of this paper, did not involve interfaces or additional heterogeneities such as |
mines or other small abnormalities.

A key question concerning the choice of a preconditioner when the boundary conditic
are different from those of the original problem is the influence of this discrepancy on t
convergence of the corresponding iterative algorithm. Manteuffel and Parter[21] and Joul
et al. [15] have proven interesting results about a problem similar to ours. In particular, th
have proven thatif both the preconditiori®grand the given operatdy, are discretizations of
second-order elliptic operatofsandB, then thel, condition number of the preconditioned
problem A, B, ! is bounded and the bound is independenhdf and only if B and A
have the same boundary conditions. Similarly, thecondition number of the operator
B, ' A, is bounded independently bfif and only if the adjoint problem8* and A* have
the same boundary conditions. They have also shown thatHtheondition number of
B, ' A, is bounded independently &f if and only if A and B have Dirichlet boundary
conditions on the same portion of the boundary. However, these results cannot be dire
applied to estimations of convergence of GMRES-based methods (see, for example,
23, 24)), because convergence in this case depends disthibutionof eigenvalues along
with the eigenvectors of the preconditioned matrix, rather than just the condition numt
In [13] ElIman and O’Leary considered the spectra of the preconditioned operator in
case of the solution of the Helmholtz equation with constant coefficients and replac
Sommerfeld boundary conditions with either Dirichlet or Neuman boundary conditiol
in the preconditioner. They established, by direct numerical experiments, that in the c
of the Neumann preconditioned matrix the eigenvalues of this matrix are bounded av
from zero, which leads to the fast convergence of the algorithm. Thus, one should exj
good performance of GMRES with the Neumann preconditioner in the case of non-cons
coefficients as well. This expectation was confirmed in our numerical experiments.

In our numerical approach we approximate the discrete operator by a matrix oper:
which can be derived by the discretization of the Helmholz equation with the coefficie
k? depending only on thg position. In this matrix operator we replace the Sommerfeld
like boundary conditions on the left and right sides with Neumann boundary conditiol
Thus we keep the Sommerfeld-like boundary conditions on the top and bottom and repl
the abnormalities in the media with an uniform value. The resulting matrix is then us
as a preconditioner to accelerate the convergence of an iterative solver based on Kr
subspace methods. We have selected the GMRES [27] method for our accelerator.
approach requires use of the preconditioner on each GMRES iteration. This can be don
use of a fast solver which requir€s N2 log N) operations.

This method was presented for the first time at the SPIE “Aerosense” meeting in Orlan
in April of 1999. At the same conference a similar, butindependent approach, was presel
by Kilmeret al. [16]. They considered the application of a similar preconditioner in the ca:
of using the QMR accelerator with perfectly matched layer (PML) boundary conditions |
in the scattering problem for the Helmholtz equation. An important question in the proble
of accurately computing the scattering field is the selection of boundary conditions, beca
in practical applications the actual physical domain is infinite, but as is standard, we us



GMRES COMPUTATION OF ELECTRICAL FIELDS 101

finite truncation region, with suitable boundary conditions. One currently popular technic
is the use of PML boundary conditions [2]. This approach produces good results in ti
domain computations for the propagation of electromagnetic waves. However, in the c
of the frequency domain the optimal choice of the parameters, which should be st
priori, is less clear. In this paper we use Sommerfeld-like boundary conditions insteac
PML boundary conditions. The numerical implementation of Sommerfeld-like bounda
conditions is easier than that of PLM, thus offering advantages if the solutions are

inferior. A natural question arises as to the quality of the numerical solution for vario
approaches. To evaluate the impact of our selection of boundary conditions in the conte
this problem, numerical tests for computational domains of different sizes were perform
The computations tested if the solution in a fixed middle region is independent, in pract
of the size of the truncation region, when that region is of moderate size or larger.

One of the goals of this work is to investigate the application of the algorithm to tt
solution of problem (1.1)—(1.2) for a sequence of frequencies. Because the coeffic
k?(x, y) depends on the frequency and we implicitly make iterations with respect to t
coefficient, it is to be expected that the number of iterations required for the converge
would depend on the frequency as well. To prevent or limit the growth of the number
iterations as the frequency increases we have investigated different extrapolation technic
Using these techniques we select an initial approximation for each iteration. This procec
significantly reduces the total time required for the solution of the problem for many differe
frequencies.

Finally, for this work to be useful for the related inverse problem, it is necessary tt
changes in the distribution of coefficients of the targets (land mines) result in suita
changes in the detector values. These and other numerical results will be discusse
Section 4.

2. STATEMENT OF THE BOUNDARY VALUE PROBLEM

We consider the following simple mathematical model for the propagation of an ele
tromagnetic field: Let(x, y, z) be coordinates in the 3-dimensional euclidean sgate
and{y = 0} be the air—ground interface. We let air be given{lgy< 0} and the ground
by {y > 0}. Let an electrical fieldg, originated by a GPR be a linearly polarized plane
wave with the direction of propagation parallel to the positive direction ofyHais,

Eo = (0, 0, €“Y), wherew is the angular frequency. Figure 1 illustrates both the comput:
tional domain and initial physical problem.

We assume that the electrical fisfdloes not depend on tzecoordinate. Then Maxwell’s
system implies thaE = (0, 0, u) where the functiom = u(x, y) satisfies the Helmholtz
PDE

Vau+Kk3(x,y)yu=0 (2.1)
K2(X, y) = w?ue(X, y) +iouo (X, y). (2.2a)

Usually, engineers introduce the so-called “loss tangent,”

tan(s) = é (2.2b)
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FIG. 1. lllustration of the computational domain and initial physical problem.

Substitution of (2.2b) into (2.2a) leads to
k? = w?ne(1+itans). (2.2¢)

We assume that = o ande = g, Wherewg andegg are the magnetic permeability
and the dielectric permittivity of a vacuum andis the relative dielectric constant. We also
assume that in air, whege< 0, ¢ = ¢¢ and tars = 0. In the ground

g =X, Y) =¢&1+ Ag1(X,y) >0, (2.3a)
tand = tan[s(x, y)] = tan(sy) + Af{tan[s1(x, y)]}, (2.3b)

where &1 and tarié;) are positive constnats and the perturbatiohs (X, y) and
Af{tan[s1(x, y)]} are due to the presence of small mine-like targets. It is assumed tt
the perturbation®\e,1(X, y) and A{tan[51(X, y)]} have support only within these targets.
Our method can also be generalized for a layered medium, in whichegaaad taris;)
would be functions depending gnonly. Letky = kg(y) be the functiork(x, y) without
inclusions present. That is,

2 @2 1oEo, fory <O
ko(Y) = 2 .
o pogogr1[1 + i tan(d1)], fory > 0.

Hence, the functiohgy(y) has constant values both in air and ground with a discontinuit
at the air—ground interface. Further, lgt = up(X, y) be the solution of Eq. (2.1) which
corresponds to the initializing plane wag&Y (y < 0) without inclusions present. We seek
the functioruinthe formu = ug+v (X, y), where the functiom represents the wave scattered
by the mine-like targets. This function satisfies the Sommerfeld boundary conditions,

r—=+oo

9

lim <” - ikv) —0, (2.42)
ar

where

Im(k) > 0. (2.4b)
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Then

kY + A(kg)e kY, fory <0
Uo = .
°7 | Bho)e o, fory > 0,

whereA(kg) andB(kg) are the reflection and transmission coefficients given by

ko —ko _ X
L)

Ako) = Ttk

Herek, andkg are the values df, for y < 0 andy > 0, respectively. The presence of these
coefficients ensures the continuity of the functiogntogether with its first derivatives at
the air—ground interface. The uniqueness and existence results for the problem (2.1)—
were proven in [6].

Substitutingu = ug + v into the PDE (2.1), we obtain the equation in a form which is
convenient for our iterative method,

—V%y — K% = f, (2.5a)
where

outside inclusions

f=fxyv = {0’ (2.5b)

(k? — k3) uo, inside inclusions

In our numerical algorithm we replace the infinite sp&2ewith a sufficiently large finite
squareQ = {—a < X, y < a}. We will assume below tha®(x, y) =k3(y) at the boundary
of Q. The boundary conditions (2.4) are replaced with the Sommerfeld-like bounds
conditions

—0 (2.6a)

=0. (2.6b)
y=+a

A principal difficulty of the problem (2.5)—(2.6) is due to the need to consider this proble
for the high frequency regime withh > 0.5 GHz. Because the frequenayis large, the
wave lengthh = Re(27/w) is very small, thus implying tha®2 should contain many
wave lengths in both th& andy directions. On the other hand at least 10 grid point:
per wave length would be required for an accurate solution by, for example, the fir
difference method. This would impose undesirable requirements for computer storage
CPU time if a conventional direct Gaussian elimination-like method for the factorizatic
of the corresponding matrices were used. In addition, we must solve this problem for m
values ofw in order to generate the frequency-dependent data required for the inve
problem which motivates this study. Thus the issueapid algorithms becomes critical
here. This has led us to develop a sophisticated iterative approach for the rapid solutic
the above problem.
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3. THE NUMERICAL METHOD

3.1. Discretization. We discretize the PDE (2.5) in the squ&dy the five-point cen-
tered finite difference scheme with an uniform mesh cell sitg of hy, whereh, =2a/M,,
hy =2a/My, whereM, and M, are the number of grid points in theandy directions,
respectively. Also, denote the maximum number of grid points across the targetxn th
direction byM! and in they direction byM; The gridded region usesvalues from the
interval [-a+hy /2, a—hy /2], andy values from f-a+hy /2, a—hy/2]. The Sommerfeld-
like boundary conditions (2.6) are imposed by use of a second order correct formula cent
on each boundary, using fictitious values outsid&ofvhich are eliminated in setting up
the matrix system. For example, on the right boundagy &, the boundary conditions for
some rowj would be

VR — UMyj

hx

= KMy 41, TR T M —ZUMX’] ,
wherevg j is the fictitious value on the right.

Let kﬁﬂ- be the matrix of (complex) values of the functikf(x, y) on this grid, where
the indexm increases in the horizontal direction, and the injlércreases in the vertical
direction, and Iekéj be the vector of values dd%(yj) on the boundary of2 including
Yo = —aandyy,1 = a. Let f be the vector corresponding to the discretization of the
right hand sidef (x, y) of (2.5a). Then the corresponding linear syster\is) = f, where
the (MyMy) x (MyxMy) matrix A has theM, by My block-tridiagonal form:

T -1 0 0

- T -l 0
A=1|... ... ... . (3.1
- Tm1 I

-1 Twm

y

Herel is the identity matrix and th&l, x My matrix T; is given by

h2 h2
_ y 2N, YR.
DJ = dlag(kij,kg,p ""kﬁ/'x,j)
2<j=<My-1

The My x My matricesB; are defined as

wp 10 0
1 0 0 0

Bj = : (3.3)
0 0 1 0 1



GMRES COMPUTATION OF ELECTRICAL FIELDS 105

where
ikoj hy
1— 0.5ikojhy
Forj = 1andj = My the My x My matrix Tj in (3.2) has the form

ikahy h? 2 h{
Tj=|1-———F—2—+2~2 |1 —hiD; Bj. 3.4
j ( 1-05ikahy ' °h2 TR 34

wherel =0if j =1andl =My +1if j = M.

Mij =1+

3.2. Construction of a preconditionerSince A is large, sparse, and non-Hermitian,
iterative methods using Krylov subspaces would seem feasible. A key issue for such
celerator methods is the successful creation of a preconditioning ndg{rito be used for
example in the form

A-Allw = f, (3.5)
Anv = w. (3.6)

There are two somewhat conflicting requirementsAqr The use of the inversay' must
be low cost, but effective enough to lead to a small number of iterations.

In our iterative algorithm we have developed a preconditioner by replacing the radiat
boundary conditions at = +a with Neumann boundary conditions and the variable coef
ficientk?(x, y) with the constant (irx) coef'ficientkgj (y), defined along the jth horizontal
line of the grid. In this case the precondition&g can be expressed in the form (3.1), in
which, however, the matricé§ have the simplified form

h2 hy
(2+ 27 — h2k01>| — (3.7a)
j=2,..., y_l
iko hy hZ h2
Ty =(1-——22Y —+2Y_h 7
Ni ( 1—05ikghy ' “h2 i h2 (3.70)
j = 1andMy,

where the valueg; in formulas (3.3) for the matriceB; are changed to the constant 1
with B; renamed simpl\B, and as earlief,=0if j =1 andl = My +1if j = M.

The eigenvalues and eigenvectors of such matfigeare well known [25], a3, differs
from the real symmetric matriB only by a constant diagonal matrix. It also follows that
the resulting eigenvectors are orthogonal. The eigenvalliethe matricesT, N; are

h? 7(s—1)
M =2 2—y —h2k2. — 2—
+ kOJ < MX )7
fors:l,...,Mx, andJ=2 , My —1; (3.8a)
, iko hy he L, N WELCERY
M=1-— L 423 _p22 —22
s 1= 05ikghy t 2hz ~ 40~ 22 008\ Ty )
fors=1,..., My, andj = 1andMy, (3.8b)

wherel =0if j =1andl =My +1if j = M.



106 GRYAZIN, KLIBANOV, AND LUCAS

For the eigenvalues!, the corresponding eigenvectors are independerit Gthese

eigenvectors are® = (ps1, - . ., ¥sm,), S=1, ..., My, where
s—1d-1/2
Qs = cos(n( Ii/l( / )), l=1,..., M. (3.9
X

In the work below, assume that these eigenvectors have been normalized.

Therefore one can solve the system (3.6) by using a cosine transformation on €
iteration of the GMRES method. We prefer, however, to work with the transformed syste
during the GMRES iterations. The advantage of the latter is that one can make the lir
transformation only once, after the algorithm has converged.

Introduce the block diagonal matricksand R as follows. Each diagonal block of the
matrix L is theMy x My matrix ¢sj, and the diagonal block of matrR is ¢J;. Now we can
transform the system (3.5) as

R-A-AllLw = f (3.10a)
R-AvLv = w, (3.10b)

wherew = Rw, f = Rf, andv = Ru. . A

Sincep” xp = | ande" = Ty, ¢ = diag(A], ..., Ay, ), the system (3.10b) has tridiag-
onal form and can be solved by a simple direct method. As an example, we accomplish
by explicitly computing the LU decomposition of the matRxAy L and using it to find the
solution by the forward and backward substitutions at each iteration. The LU decompc
tion is based on Gaussian elimination with partial pivoting, and this approach is known
be stable in most practical problems. We have consistently observed this in our numer
experiments.

3.3. Using a preconditioner as a solveiOur preconditioner itself can be used as a
solver. WithR Ay L being the iterative matrix, this algorithm can be written as

RAyL?™ ™ = f — (RAL— RAYL)?", (3.11)

wheren is the iteration number. Convergence of (3.11) can be investigated by analyz
the spectrum of the matriAﬁlA. The complete numerical analysis of the spectrum o
this matrix can be found in [13]. Also, we can use this information to investigate tt
convergence of GMRES, since the spectra of the left and right preconditioned matri
are the same. Unfortunately, however, in most calculations the algorithm (3.11) does
converge and it is necessary to replace the radiation boundary conditions with Neum
boundary conditions at = +a. In this case satisfactory results are achieved only in th
case of high, rather than low soil conductivity. A detailed description of this approach a
comparison of the numerical results in the case of using Dirichlet, Neumann, and Somer
boundary conditions can be found in [11].

3.4. GMRES. As we mentioned before, the application of the Krylov subspace methc
for the solution of the Helmholtz equation and radiation boundary conditions in [14] ga
excellent results for the case of constant coefficients. We extend this approach to the
of non-constant coefficients. Because in the numerical experiments of [14] the num
of iterations required for convergence was small, we chose to use the GMRES met
instead of other variants. As will be seen in Section 4, this proved to be very success
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This guaranties the calculations without the possible break downs of QMR used in [14]
addition, if the number of iterations is small enough, it is not necessary to restart GMRI
which also makes the choice of this algorithm very attractive. Now, because some de
of our numerical scheme differ from the common formulation of the GMRES [27], w
describe below the sequence of steps for this algorithm:

1. Start: Cosine transformation g_fz Rf _

2. Choosewy and compute, = f — RAA Lwg = f — R(Ay + D)Ay L wo, y1 =
ro/llroll;

3. lterate: Forj =1,2,...,mdo:

hij = (RAAILY;, Y), i =1,2,..., ]
9i+1= RAAMLY; — Xl hiy,
Nt = 1Yj4all
Yi+1 = ¥j+1/hjia
4. Form the approximate solution:
Wm = wo + Ly iV,

wherea, minimizes||e;||roll — Hme|l,
wherea = (a1, @y, ..., am), € is a first column of thek + 1) x (k + 1) identity
matrix, H is a(k + 1) x k Hessenberg matrix.

5. Find the solution by the inverse transfoog = L wp,.

A convergence analysis of GMRES-type algorithms can be found in [13, 24].

In our case the preconditioné and the matrixA differ by a matrix of rank <2My, +
My M, and one can prove then that at ledstMy — 2M, — M, M, eigenvalues of the
preconditioned matrix are identically one. The convergence GMRES was studied in a
riety of publications. Such estimations, where the majority of the eigenvalues (the |
My My — | eigenvalues) were close to 1, were considered in [24]. These estimations
based on the analysis of mgx; — ;|1 < j < 1}/|xil, So, it is important to know the
distribution of the first eigenvalues of the preconditioned matrix. An effective numeri
cal procedure for this analysis was proposed in [13]. To rapidly solve the problems (2
(2.6) for many frequencies, we have used an extrapolation from several previous freq
cies as a first approximation for the next one. Specifically we used extrapolation formt
from 1st to 4th order. We will report on the effectiveness of this approach in the ne
section.

4. NUMERICAL RESULTS

The above algorithm was implemented in FORTRAN 77 using complex double precisi
arithmetic on a Silicon Graphics Origin 200, using one processor. In the tests below
geometrical sizes are given in meters. The ranges of the parametgrsand taris) are
as in [8, 26]. We choose the frequency range tade(0.5, 2) GHz. For this choice of
frequencies we obtain the following values of the electrical properties:
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TABLE |
Electrical Parameters
& tan(s) k?(w = 1 GH2)
Air 1 0 439.2
Dry sail 2.9 0.025 1273 31i
Wet soil (5% moisture) 4 0.22 1756395
TNT 2.86 0.0018 1256 2.26i
Hen
n=4r x 10_7—ry,
Farad
gg = 8.854x 107 12——.

The values of the electrical parameters in Table | are taken from [26]; the vallkés of
are non-dimensional.

4.1. Two tests verifying convergence on a model probldmthe first two tests we
consider the convergence of the algorithm on a sequence of grids. The source func
f was selected such that the true solution wes, y) = ¢(X) - ¢(y), wheregp(x) =
expiko(x + a)) + exp(—iko(x — a)) — 2. Note that the analytic solution satisfies the
radiation boundary condition (2.6). The errorréportedas the relative maximum norm
rl = IV® —v|l/llvll«, and the iterative process is stopped whenitiiéal residual
is reduced by a factor of 1. Actually in our numerical experiments it would have been
sufficient to stop the algorithm when the initial residual is reduced by, Xcause after this
value was achieved, the difference between the analytic and numerical solution rema
essentially the same. In these experiments we used the démain—50 cm 50 cm)? and
zero initial values were assumed. In the reportage of this selsjamthe iteration number
when the convergence criteria was first satisfied and TP is the total time in seconds.

In Table Il, we report on the numerical results for the propagation of waves in a nc
attenuating media, i.ek? = 4392. It should be noticed that the number of iterations hold:s
roughly constant as the mesh shzelecreases, a behavior similar to multigrid at its best
This has important advantages for large-scale problems.

Next, we consider a case using an uniform background (without interface) with tv
inclusions. The parameters of the background in this test correspond to dry soil, wh
k? = k2 outside of two circular abnormalities, one of which models a mine and the other
air gap. The radius of each abnormality is 5 cm. The distributidk? @f the first inclusion
corresponds to TNT (trinitrotoluene) and in the second inclusfaorresponds to air. Thus

TABLE Il
Results of Numerical Experiments for the First Test

Grid ro No TP(s)
99 x 99 989x 1072 7 0.5
199x 199 261 x 1073 8 2.2

399x 399 673 x 107 8 9.8
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TABLE 11l
Results of Numerical Experiments for the Second Test

Grid ro No TP(s)

99 x 99 996 x 1073 11 0.6

199x 199 260 x 1073 11 2.7
399 x 399 673 x 10 11 10

k? can be represented in the form

1273+ 31i, for x—x)2+(y—y)2>r2 i=12
k? ={ 12564 2.26i, for (x —x))®+ (y — y1)? <r2, (4.1)
439 for (x — x2)? 4 (y — y2)* < 7,

where(xy, y1) = (0, 15 cm, (X2, ¥2) = (0, 40) cm, andr;, = 5 cm are the centers and
radii of the first and second inclusions, respectively.

We see several interesting results from Table IlI: The method converges rapidly, in e
case always taking just 11 iterations/run. The CPU time is roughly proportional to t
number of unknowns. Again, the error is clearly 2nd order as should be expected.

4.2. A target in wet soil containing TNTIn the third series of tests we compute the
response to a mine-like target (TNT) in wet soil. We use ranges of parameters as ab
Mine-like targets were embedded withihn {y > 0}. The domair2 N {y < 0} consists
of dry air. We choose the functidet as

4392, fory <O
K2(x,y) = { 1756+ 395, fory >0, (X — x1)2 < (y — y)? > r2 (4.2)
1256+ 2.261, for (x — xy)2 + (Y — y1)2 < r2

wherex; =0,y; =20cm,r; =5cm.

Hence the first two rows in (4.2) correspondgo and the third one is due to a mine-like
target, which we model as a circle with center(at, y;) = (0, 20) cm, and with radius
ry = 5cm. The values of the paramekgicorrespond to air foy < 0 and to 5% moisturized
sand fory > 0. The frequency = 1 GHz was chosen here. The value of the paranéter
within the target corresponds to trinitrotoluene (TNT) (see Table I). In all cases 19 iteratic
were required for convergence, without regard to details.

Figures 2 and 3 show a contour plot of the amplitude and phase over the dorr
(—106 cm, 106 cn?) using a computational grid of size 399399. Horizontal lines at
the detector regioy = —10 and the interface ling = 0 were added, as an aid to interpre-
tation. In these two plots we made an exception to our usual convention, and placed a
the upper half plane. In addition a circle was drawn in the soil showing the land mine.
the amplitude contour plot, two levels of contour lines were used: One fine set for the v
small amplitudes away from the land mine, and one coarse set for the region near the
mine, where there is rapid growth. The phase contour plot shows many interesting feat
and structures. The phase changes fromto 7 radians between each set of dark bands
which are roughly centered at the land mine. The bands are wider in the air and narrc
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FIG. 2. Contour plot of the amplitude of the functienin Test 3 at 1 GHz.

in the soil. Two new bands begin near the interface and go into the soil. Examination c
larger domain (not shown) shows that additional bands such as these were not gener
but other structures emerged. We have found the systematic structure of these contot
be most interesting.

One important issue in the numerical solution of scattering problems is the influer
of the size of the computational domain on the quality of the solution. To ensure t
accuracy of the solution we should verify that the size of the computational domain dc
not change the solution in the region of the interest, after a certain size. To examine

-100 -50 ){2 50 100

FIG. 3. Contour plot of the phase in radians of the functioim Test 3 at 1 GHz.
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Re(v)

-1k

-2t i

_3 ] 1 1 ] 1
=300 -200 -100 0 100 200 300
X, cm

FIG. 4. Thex-dependent distribution of the real part of the functiofor Test 3 at the levey = —10 (i.e.,
10 cmabovethe air—ground interface). The solid, dashed, and dotted lines display the cdseés3of x,y <
53} cm, {—106 < x, y < 106} cm, and{—212 < X, y < 212} cm domains, respectively.

we considered 3 different computational domain§3 cm 53 cm)?, (—106 cm 106 cm?,
(—212 cm 212 cm?, using grid sizes of 199 199 399x 399, and 79% 799, respectively.
The parameters of the background and the inclusion as well as the position of the inclu.
were fixed. Figures 4 and 5 display the distribution of the real part of the functidhcm
above the ground surface and at the ground surfgce —10, 0.0 cm). One can observe

Re(v)

-3 _

4t i

=300 -200 -100 0 100 200 300
X, cm

FIG.5. Similarto Fig. 3, but at the level = O (i.e., on the air—ground interface).
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the excellent agreement between these distributions over the smallest comparison re
[-53 cm 53 cm]: There is a slight difference at the inner peaks for the smallest compu
tional domain, but agreement over the next two domains. Similar plots were obtained for
imaginary parts of the function. Comparison of both real and imaginary parts for region:
in the ground, such ag= 10 or 20 cm, shows exact agreement, to graphical accuracy, a
increasing values for the peaks.

4.3. A target in wet soil containing a mixture of TNT and aifhe goal of the fourth
test was to compute tHeequency dependengésponse for detectors placed on the grounc
for two different types of mine-like targets. Recall that we need such a response as
input for the solution of the inverse problem. It is well known that air often compose
from 10 to 30% of a mine. The rest of a plastic mine is a TNT-like explosive. So, or
can hope that an air signature in this output signal might help to differentiate mines fr
clutter. Therefore we simulate two mine-like targets. The first was a circle with radi
r = 5 cmfilled with TNT and with centex; =0, y; =20 cm, i.e., the same as in the second
test. The second target consists of two concentric circles with the same center of (0, 20)
The radius of the first circle wag =4 cm, and the radius of the second was=5 cm.
The first circle was filled with TNT, and the annulus between the first and second circ
consisted of dry air. We computed the boundary value problem (3.2), (3.3a), (3.5) for
frequenciesv € (0.5, 2) GHz with the step sizé\w =0.01 GHz= 10 Mhz, thus solving
150 problems. The total time was 5 minutes using a:999 grid. At each frequency
o the initial distribution for the functionn was taken as an extrapolation from the so-
lutions at the previous frequencies. To do this, we considered extrapolation formulas
different orders. Figure 6 shows the distribution of the number of iterations for differe
frequencies using zero as the initial approximation, as well as for 1st, 2nd, 3rd, and
order extrapolation formulas. Note that for the 4th order extrapolation formula, only 9—

22 T T
201

lterations

L 2

o0 N H (=] o
P T
L

1 1.5
150 frequencies (in GHz) in increments of .01

FIG.6. The number of iterations for extrapolation formulas of different orders, as a function of frequency. T
top solid line uses an initial approximation of zero. The dashed, dotted, dot-dashed, and bottom solid lines repr
the improvements achieved by use of 1st, 2nd, 3rd, and 4th extrapolation formulas for the initial approximati
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FIG.7. Frequency dependent distribution of the real part of the funeti@ny, »). The solid and dashed line
display responses from TNT filled and air-TNT filled targets at a detector location g§ = (0, —10) cm. The
difference in responses, especially from 1 to 1.6 GHz is evident.

iterations were required in most cases, in contrast to requiring up to 20 without use
extrapolation.

Figure 7 displays the resulting frequency dependent curves=at0,y = —10, at a
detector placed 10 cm above the air—ground interface and just above the center of the te
Solid and dashed lines correspond to TNT-filled and air-TNT filled targets, respective
The difference in the two responses is evident, especially between 1 and 1.6 GHz. FigL
shows similar curves but for a detector which is locatedxaty) = (10, —10) cm, i.e.,

10 cm to the right of the previous detector. Again a similar difference in responses car

0.015 T T

0.01

0.005

Re(v)

-0.005

-0.01

-0.015

0055 1 15 2
Frequency, GHz

FIG. 8. The same as in Fig. 5, but at a detector locatiofxofy) = (10, —10) cm.
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observed. However, beginning from abaut 30 cm such differences are very small (these
results are not shown).

5. CONCLUSIONS

A new and rapid iterative method for the solution of the forward problem of propagatic
of high frequency GPR signals using Sommerfeld-like boundary conditions over regic
with small inclusions was developed and computationally implemented. A typical time
produce the frequency dependent response over 150 frequencies oxd299rid was
just 5 minutes on a Silicon Graphics Origin 200 using only one processor, as contraste
about 6 hours in the case of Gaussian elimination like methods.

The method was tested for realistic parameter ranges. The influence of the trunc:
region on the numerical solution of the scattered problem for the Helmholtz equation w
Sommerfeld-like boundary conditions was investigated. Interesting features of the am
tude and phase distribution were shown and reported. It was found that the freque
dependent output signals for two types of mine-like targets, (1) one filled only with t
TNT, and (2) one filled with both TNT and dry air, were significantly different. Given tha
mines contain from 10 to 30% of air, and stone-like clutter likely does not contain air, tf
may well help to differentiate mines from clutter (along with other similar parameters). Tl
authors intend to use the developed code to simulate data for the inverse problem, w
will be solved by the elliptic systems method [10, 19, 20].
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