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The ultimate goal of the authors is to apply inverse problem techniques to image
land mines using an electromagnetic signal originated by ground penetrating radar.
Specifically, the intention is to use the recently developed elliptic systems method,
which has been successfully applied by these authors to the problem of imaging
biological tissues using lasers. As the first step it is necessary to develop a fast
and accurate numerical method for the solution of the forward problem to simulate
data for the inverse problem. The main challenge is the requirement of solving a
Helmholtz-like equation forhigh frequencies which is excessively time consuming
using standard direct solution techniques. A novel accurate and rapid numerical
procedure for the solution of this equation is described in this paper. The kernel of
this algorithm is a combination of GMRES and a carefully chosen preconditioner, the
solution of which is found using a fast transform method. The extended problem of
solving Helmholtz-like equations for many frequencies is also considered. Numerical
results for realistic ranges of parameters in soil and mine-like targets, the investigation
of the impact of the size of the truncation region on accuracy, and the sensitivity of
detector readings to changes in the media are presented.c© 2000 Academic Press

Key Words:land mines; Helmholtz equation; elliptic systems method; GMRES.

1. INTRODUCTION

The goal of this paper is to describe a novel and effective numerical method for the
forward solution of high frequency electromagnetic wave propagation. This method will
be used later by the authors to computationally simulate data for the solution of the inverse
problem of imaging mine-like targets using the elliptic systems method [10, 19, 20]. Thus
the solution of the forward problem presented in this paper is a necessary prelude to the
future solution of a related inverse problem.
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The problem of imaging land mines is of great significance. Handheld ground penetrating
radars (GPRs) represent a non-expensive hardware device for this purpose. A principal
difficulty of GPRs, however, is linked with a high percentage of false alarms, as well as
false negatives; the latter especially relates to plastic mines.

Land mines are modeled as small abnormalities imbedded in an otherwise uniform me-
dia with an air–ground interface. These abnormalities are characterized by the electrical
permittivity ε and the conductivityσ , whose values differ from those of the host media.
The inverse problem consists of the determination of perturbations inε andσ , using mea-
surements of output electrical signals at a number of angular frequenciesω and at a number
of detectors (i.e., antennas) located near the ground surface. These perturbations of the
electrical parameters will be used to characterize both locations of mine-like targets and to
differentiate mines from clutter.

However, as is always the case in inverse problems, it is first necessary to solve the forward
problem in order to simulate the data for the inverse problem. Two important requirements
for the forward solver are: (1) it should be accurate, and (2) it should be fast. The importance
of the second requirement is due to the practical necessity of conducting a large number of
numerical tests of the inverse algorithm. The main difficulty in solving the forward problem
is that it must be solved for large values of the angular frequencies, i.e., for small wave
lengths. Thus a large number of grid points must be used. In this paper we present a novel
numerical method for the solution of the forward problem, which satisfies the above two
requirements.

The problem considered in this paper is to compute the numerical solution of the
Helmholtz equation

∇2v + k2(x, y)v = f, in Ä (1.1)

with the Sommerfeld-like boundary conditions

vn − ikv = 0, on ∂Ä, (1.2)

whereÄ = {−a ≤ x, y ≤ a}; andk2,v, and f are complex valued functions. Equation (1.2)
represents an absorbing boundary condition which allows normally incident waves to pass
out ofÄ transparently. It is implicitly assumed that the support off lies well inside the
interior ofÄ.

If the problem is discretized using a second order centered finite-difference scheme on a
regular mesh, the resulting linear system of equations has block tridiagonal structure. This
matrix is neither positive definite nor Hermitian. Hence, most iterative methods either fail
to converge or converge too slowly, which is impractical. Concerning the other approaches
for the solution of the problem (1.1)–(1.2), we refer to Baylisset al. [1] for a preconditioned
conjugate-gradient algorithm, Despres [7] and Kim [17, 18] for a domain decomposition
method, and Douglaset al. [9] for an ADI algorithm.

The application of multilevel methods suffers from the requirement that the coarse meshes
used must be fine enough to accurately represent the solution; see [3]. On the other hand
the solution of this problem by a direct method based on Gaussian elimination requires
a prohibitive amount of additional storage and computer time and thus has limited use.
The most promising results in the solution of a similar problem have been obtained by
preconditioned Krylov subspace methods [12, 14, 16]. In this paper we generalize some
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approaches developed for the Helmholtz equation with constant coefficients by Ernst and
Golub [14] and Elman and O’Leary [12]. In these papers the authors derived an excellent
preconditioner by replacing the Sommerfeld-like boundary conditions with Dirichlet or
Neumann boundary conditions. They presented numerical experiments which demonstrated
that their preconditioner had good convergence properties. However, their problem, unlike
the one of this paper, did not involve interfaces or additional heterogeneities such as land
mines or other small abnormalities.

A key question concerning the choice of a preconditioner when the boundary conditions
are different from those of the original problem is the influence of this discrepancy on the
convergence of the corresponding iterative algorithm. Manteuffel and Parter [21] and Joubert
et al. [15] have proven interesting results about a problem similar to ours. In particular, they
have proven that if both the preconditionerBh and the given operatorAh are discretizations of
second-order elliptic operatorsAandB, then theL2 condition number of the preconditioned
problem Ah B−1

h is bounded and the bound is independent ofh if and only if B and A
have the same boundary conditions. Similarly, theL2 condition number of the operator
B−1

h Ah is bounded independently ofh if and only if the adjoint problemsB∗ andA∗ have
the same boundary conditions. They have also shown that theH1 condition number of
B−1

h Ah is bounded independently ofh if and only if A and B have Dirichlet boundary
conditions on the same portion of the boundary. However, these results cannot be directly
applied to estimations of convergence of GMRES-based methods (see, for example, [13,
23, 24]), because convergence in this case depends on thedistributionof eigenvalues along
with the eigenvectors of the preconditioned matrix, rather than just the condition number.
In [13] Elman and O’Leary considered the spectra of the preconditioned operator in the
case of the solution of the Helmholtz equation with constant coefficients and replaced
Sommerfeld boundary conditions with either Dirichlet or Neuman boundary conditions
in the preconditioner. They established, by direct numerical experiments, that in the case
of the Neumann preconditioned matrix the eigenvalues of this matrix are bounded away
from zero, which leads to the fast convergence of the algorithm. Thus, one should expect
good performance of GMRES with the Neumann preconditioner in the case of non-constant
coefficients as well. This expectation was confirmed in our numerical experiments.

In our numerical approach we approximate the discrete operator by a matrix operator
which can be derived by the discretization of the Helmholz equation with the coefficient
k2 depending only on they position. In this matrix operator we replace the Sommerfeld-
like boundary conditions on the left and right sides with Neumann boundary conditions.
Thus we keep the Sommerfeld-like boundary conditions on the top and bottom and replace
the abnormalities in the media with an uniform value. The resulting matrix is then used
as a preconditioner to accelerate the convergence of an iterative solver based on Krylov
subspace methods. We have selected the GMRES [27] method for our accelerator. This
approach requires use of the preconditioner on each GMRES iteration. This can be done by
use of a fast solver which requiresO(N2 log N) operations.

This method was presented for the first time at the SPIE “Aerosense” meeting in Orlando,
in April of 1999. At the same conference a similar, but independent approach, was presented
by Kilmeret al. [16]. They considered the application of a similar preconditioner in the case
of using the QMR accelerator with perfectly matched layer (PML) boundary conditions [2]
in the scattering problem for the Helmholtz equation. An important question in the problem
of accurately computing the scattering field is the selection of boundary conditions, because
in practical applications the actual physical domain is infinite, but as is standard, we use a
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finite truncation region, with suitable boundary conditions. One currently popular technique
is the use of PML boundary conditions [2]. This approach produces good results in time
domain computations for the propagation of electromagnetic waves. However, in the case
of the frequency domain the optimal choice of the parameters, which should be set a
priori, is less clear. In this paper we use Sommerfeld-like boundary conditions instead of
PML boundary conditions. The numerical implementation of Sommerfeld-like boundary
conditions is easier than that of PLM, thus offering advantages if the solutions are not
inferior. A natural question arises as to the quality of the numerical solution for various
approaches. To evaluate the impact of our selection of boundary conditions in the context of
this problem, numerical tests for computational domains of different sizes were performed.
The computations tested if the solution in a fixed middle region is independent, in practice,
of the size of the truncation region, when that region is of moderate size or larger.

One of the goals of this work is to investigate the application of the algorithm to the
solution of problem (1.1)–(1.2) for a sequence of frequencies. Because the coefficient
k2(x, y) depends on the frequency and we implicitly make iterations with respect to this
coefficient, it is to be expected that the number of iterations required for the convergence
would depend on the frequency as well. To prevent or limit the growth of the number of
iterations as the frequency increases we have investigated different extrapolation techniques.
Using these techniques we select an initial approximation for each iteration. This procedure
significantly reduces the total time required for the solution of the problem for many different
frequencies.

Finally, for this work to be useful for the related inverse problem, it is necessary that
changes in the distribution of coefficients of the targets (land mines) result in suitable
changes in the detector values. These and other numerical results will be discussed in
Section 4.

2. STATEMENT OF THE BOUNDARY VALUE PROBLEM

We consider the following simple mathematical model for the propagation of an elec-
tromagnetic field: Let(x, y, z) be coordinates in the 3-dimensional euclidean spaceR3

and{y = 0} be the air–ground interface. We let air be given by{y < 0} and the ground
by {y > 0}. Let an electrical fieldE0 originated by a GPR be a linearly polarized plane
wave with the direction of propagation parallel to the positive direction of they-axis,
E0 = (0, 0, eiωy), whereω is the angular frequency. Figure 1 illustrates both the computa-
tional domain and initial physical problem.

We assume that the electrical fieldE does not depend on thez-coordinate. Then Maxwell’s
system implies thatE = (0, 0, u) where the functionu = u(x, y) satisfies the Helmholtz
PDE

∇2u+ k2(x, y)u = 0 (2.1)

k2(x, y) = ω2µε(x, y)+ iωµσ(x, y). (2.2a)

Usually, engineers introduce the so-called “loss tangent,”

tan(δ) = σ

ωε
. (2.2b)
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FIG. 1. Illustration of the computational domain and initial physical problem.

Substitution of (2.2b) into (2.2a) leads to

k2 = ω2µε(1+ i tanδ). (2.2c)

We assume thatµ ≡ µ0 andε = ε0εr , whereµ0 andε0 are the magnetic permeability
and the dielectric permittivity of a vacuum andεr is the relative dielectric constant. We also
assume that in air, wherey < 0, ε = ε0 and tanδ = 0. In the ground

εr = εr (x, y) = εr 1+1εr 1(x, y) > 0, (2.3a)

tanδ = tan[δ(x, y)] = tan(δ1)+1{tan[δ1(x, y)]}, (2.3b)

where εr 1 and tan(δ1) are positive constnats and the perturbations1εr 1(x, y) and
1{tan[δ1(x, y)]} are due to the presence of small mine-like targets. It is assumed that
the perturbations1εr 1(x, y) and1{tan[δ1(x, y)]} have support only within these targets.
Our method can also be generalized for a layered medium, in which caseεr 1 and tan(δ1)

would be functions depending ony only. Let k0 = k0(y) be the functionk(x, y) without
inclusions present. That is,

k2
0(y) =

{
ω2µ0ε0, for y < 0
ω2µ0ε0εr 1[1+ i tan(δ1)], for y > 0.

Hence, the functionk0(y) has constant values both in air and ground with a discontinuity
at the air–ground interface. Further, letu0 = u0(x, y) be the solution of Eq. (2.1) which
corresponds to the initializing plane waveeik0y(y< 0) without inclusions present. We seek
the functionu in the formu= u0+v(x, y), where the functionv represents the wave scattered
by the mine-like targets. This function satisfies the Sommerfeld boundary conditions,

lim
r→±∞

(
∂v

∂r
∓ ikv

)
= 0, (2.4a)

where

Im(k) > 0. (2.4b)
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Then

u0 =
{

eik0y + A(k0)e−ik0y, for y < 0

B(k0)eik0y, for y > 0,

whereA(k0) andB(k0) are the reflection and transmission coefficients given by

A(k0) = k−0 − k+0
k−0 + k+0

, B(k0) = 2k−0
k−0 + k+0

.

Herek−0 andk+0 are the values ofk0 for y < 0 andy > 0, respectively. The presence of these
coefficients ensures the continuity of the functionu0 together with its first derivatives at
the air–ground interface. The uniqueness and existence results for the problem (2.1)–(2.4)
were proven in [6].

Substitutingu = u0 + v into the PDE (2.1), we obtain the equation in a form which is
convenient for our iterative method,

−∇2v − k2v = f, (2.5a)

where

f = f (x, y, v) =
{

0, outside inclusions,(
k2− k2

0

)
u0, inside inclusions.

(2.5b)

In our numerical algorithm we replace the infinite spaceR2 with a sufficiently large finite
squareÄ={−a< x, y<a}. We will assume below thatk2(x, y)= k2

0(y) at the boundary
of Ä. The boundary conditions (2.4) are replaced with the Sommerfeld-like boundary
conditions (

∂v

∂x
∓ ikv

)∣∣∣∣
x=±a

= 0 (2.6a)(
∂v

∂y
∓ ikv

)∣∣∣∣
y=±a

= 0. (2.6b)

A principal difficulty of the problem (2.5)–(2.6) is due to the need to consider this problem
for the high frequency regime withω ≥ 0.5 GHz. Because the frequencyω is large, the
wave lengthλ = Re(2π/ω) is very small, thus implying thatÄ should contain many
wave lengths in both thex and y directions. On the other hand at least 10 grid points
per wave length would be required for an accurate solution by, for example, the finite
difference method. This would impose undesirable requirements for computer storage and
CPU time if a conventional direct Gaussian elimination-like method for the factorization
of the corresponding matrices were used. In addition, we must solve this problem for many
values ofω in order to generate the frequency-dependent data required for the inverse
problem which motivates this study. Thus the issue ofrapid algorithms becomes critical
here. This has led us to develop a sophisticated iterative approach for the rapid solution of
the above problem.



104 GRYAZIN, KLIBANOV, AND LUCAS

3. THE NUMERICAL METHOD

3.1. Discretization. We discretize the PDE (2.5) in the squareÄ by the five-point cen-
tered finite difference scheme with an uniform mesh cell size ofhx × hy, wherehx = 2a/Mx,
hy= 2a/My, whereMx and My are the number of grid points in thex and y directions,
respectively. Also, denote the maximum number of grid points across the target in thex
direction byM I

x and in they direction byM I
y . The gridded region usesx values from the

interval [−a+hx/2,a−hx/2], andy values from [−a+hy/2,a−hy/2]. The Sommerfeld-
like boundary conditions (2.6) are imposed by use of a second order correct formula centered
on each boundary, using fictitious values outside ofÄ, which are eliminated in setting up
the matrix system. For example, on the right boundary (x= a), the boundary conditions for
some rowj would be

vR, j − vMx, j

hx
= ikMx+1, j

vR, j + vMx, j

2
,

wherevR, j is the fictitious value on the right.
Let k2

mj be the matrix of (complex) values of the functionk2(x, y) on this grid, where
the indexm increases in the horizontal direction, and the indexj increases in the vertical
direction, and letk2

0 j be the vector of values ofk2
0(yj ) on the boundary ofÄ including

y0 = −a and yMy+1 = a. Let f be the vector corresponding to the discretization of the
right hand sidef (x, y) of (2.5a). Then the corresponding linear system isA(v) = f , where
the(Mx My)× (Mx My) matrix A has theMy by My block-tridiagonal form:

A =



T1 −I 0 · · · 0

−I T2 −I · · · 0

· · · · · · · · · · · · · · ·
−I TMy−1 −I

−I TMy

 . (3.1)

Here I is the identity matrix and theMx × Mx matrix Tj is given by

Tj =
(

2+ 2
h2

y

h2
x

)
I − h2

y D j −
h2

y

h2
x

Bj , (3.2)

Dj = diag
(
k2

1, j , k
2
2, j , . . . , k

2
Mx, j

)
2≤ j ≤ My − 1.

The Mx × Mx matricesBj are defined as

Bj =



µ j 1 0 · · · · · · 0

1 0 1 0 · · · 0

. . .

0 · · · 0 1 0 1

0 · · · · · · 0 1 µ j


, (3.3)
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where

µ j = 1+ ik0 j hx

1− 0.5ik0 j hx
.

For j = 1 and j = My the Mx × Mx matrix Tj in (3.2) has the form

Tj =
(

1− ik0l hy

1− 0.5ik0l hy
+ 2

h2
y

h2
x

)
I − h2

y D j −
h2

y

h2
x

Bj , (3.4)

wherel = 0 if j = 1 andl = My + 1 if j = My.

3.2. Construction of a preconditioner.Since A is large, sparse, and non-Hermitian,
iterative methods using Krylov subspaces would seem feasible. A key issue for such ac-
celerator methods is the successful creation of a preconditioning matrixAN , to be used for
example in the form

A · A−1
N w = f, (3.5)

ANv = w. (3.6)

There are two somewhat conflicting requirements forAN : The use of the inverseA−1
N must

be low cost, but effective enough to lead to a small number of iterations.
In our iterative algorithm we have developed a preconditioner by replacing the radiation

boundary conditions atx = ±a with Neumann boundary conditions and the variable coef-
ficient k2(x, y) with the constant (inx) coefficientk2

0 j (y), defined along the jth horizontal
line of the grid. In this case the preconditionerAN can be expressed in the form (3.1), in
which, however, the matricesTj have the simplified form

TNj =
(

2+ 2
h2

y

h2
x

− h2
yk2

0 j

)
I − h2

y

h2
x

B, (3.7a)

j = 2, . . . ,My − 1

TNj =
(

1− ik0l hy

1− 0.5ik0l hy
+ 2

h2
y

h2
x

− h2
yk2

0 j

)
I − h2

y

h2
x

B; (3.7b)

j = 1 andMy,

where the valuesµ j in formulas (3.3) for the matricesBj are changed to the constant 1
with Bj renamed simplyB, and as earlier,l = 0 if j = 1 andl = My + 1 if j = My.

The eigenvalues and eigenvectors of such matricesTNj are well known [25], asTNj differs
from the real symmetric matrixB only by a constant diagonal matrix. It also follows that
the resulting eigenvectors are orthogonal. The eigenvaluesλ j

s of the matricesTNj are

λ j
s = 2+ 2

h2
y

h2
x

− h2
yk2

0 j − 2
h2

y

h2
x

cos

(
π(s− 1)

Mx

)
,

for s= 1, . . . ,Mx, and j = 2, . . . ,My − 1; (3.8a)

λ j
s = 1− ik0l hy

1− 0.5ik0l hy
+ 2

h2
y

h2
x

− h2
yk2

0 j − 2
h2

y

h2
x

cos

(
π(s− 1)

Mx

)
,

for s= 1, . . . ,Mx, and j = 1 andMy, (3.8b)

wherel = 0 if j = 1 andl = My + 1 if j = My.
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For the eigenvaluesλ j
s, the corresponding eigenvectors are independent ofj . These

eigenvectors areϕs= (ϕs1, . . . , ϕsMx ), s= 1, . . . ,Mx, where

ϕsl = cos

(
π(s− 1)(l − 1/2)

Mx

)
, l = 1, . . . ,Mx. (3.9)

In the work below, assume that these eigenvectors have been normalized.
Therefore one can solve the system (3.6) by using a cosine transformation on each

iteration of the GMRES method. We prefer, however, to work with the transformed system
during the GMRES iterations. The advantage of the latter is that one can make the linear
transformation only once, after the algorithm has converged.

Introduce the block diagonal matricesL and R as follows. Each diagonal block of the
matrix L is theMx ×Mx matrixϕsl, and the diagonal block of matrixR isϕT

sl. Now we can
transform the system (3.5) as

R · A · A−1
N Lw̄ = f̄ , (3.10a)

R · AN L v̄ = w̄, (3.10b)

wherew̄ = Rw, f̄ = R f , andv̄ = Rv.
SinceϕT ∗ϕ = I andϕT ∗ TNj ∗ϕ = diag(λ j

1, . . . , λ
j
Mx
), the system (3.10b) has tridiag-

onal form and can be solved by a simple direct method. As an example, we accomplish this
by explicitly computing the LU decomposition of the matrixR AN L and using it to find the
solution by the forward and backward substitutions at each iteration. The LU decomposi-
tion is based on Gaussian elimination with partial pivoting, and this approach is known to
be stable in most practical problems. We have consistently observed this in our numerical
experiments.

3.3. Using a preconditioner as a solver.Our preconditioner itself can be used as a
solver. WithR AN L being the iterative matrix, this algorithm can be written as

R AN L v̄n+1 = f̄ − (R AL− R AN L)v̄n, (3.11)

wheren is the iteration number. Convergence of (3.11) can be investigated by analyzing
the spectrum of the matrixA−1

N A. The complete numerical analysis of the spectrum of
this matrix can be found in [13]. Also, we can use this information to investigate the
convergence of GMRES, since the spectra of the left and right preconditioned matrices
are the same. Unfortunately, however, in most calculations the algorithm (3.11) does not
converge and it is necessary to replace the radiation boundary conditions with Neumann
boundary conditions atx=±a. In this case satisfactory results are achieved only in the
case of high, rather than low soil conductivity. A detailed description of this approach and
comparison of the numerical results in the case of using Dirichlet, Neumann, and Somerfeld
boundary conditions can be found in [11].

3.4. GMRES. As we mentioned before, the application of the Krylov subspace method
for the solution of the Helmholtz equation and radiation boundary conditions in [14] gave
excellent results for the case of constant coefficients. We extend this approach to the case
of non-constant coefficients. Because in the numerical experiments of [14] the number
of iterations required for convergence was small, we chose to use the GMRES method
instead of other variants. As will be seen in Section 4, this proved to be very successful.
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This guaranties the calculations without the possible break downs of QMR used in [14]. In
addition, if the number of iterations is small enough, it is not necessary to restart GMRES,
which also makes the choice of this algorithm very attractive. Now, because some details
of our numerical scheme differ from the common formulation of the GMRES [27], we
describe below the sequence of steps for this algorithm:

1. Start: Cosine transformation of̄f = R f
2. Choose ¯w0 and computer0 = f̄ − R AA−1

N Lw̄0 = f̄ − R(AN + D)A−1
N Lw̄0, y1 =

r0/‖r0‖;
3. Iterate: Forj = 1, 2, . . . ,m do:

hi, j = (R AA−1
N Lyj , yi ), i = 1, 2, . . . , j

ŷj+1 = R AA−1
N Lyj −

∑ j
i=1 hi j yi

h j+1, j = ‖ŷj+1‖
yj+1 = ŷj+1/h j+1, j

4. Form the approximate solution:

w̄m = w̄0+
∑m

i=1 αi yi ,

whereαm minimizes‖e1‖r0‖ − Hmα‖,
whereα = (α1, α2, . . . , αm), e1 is a first column of the(k + 1) × (k + 1) identity
matrix, H is a(k+ 1)× k Hessenberg matrix.

5. Find the solution by the inverse transformvm = Lwm.

A convergence analysis of GMRES-type algorithms can be found in [13, 24].
In our case the preconditionerAN and the matrixA differ by a matrix of rankl ≤ 2My+

M I
x M I

y and one can prove then that at leastMx My − 2My − M I
x M I

y eigenvalues of the
preconditioned matrix are identically one. The convergence GMRES was studied in a va-
riety of publications. Such estimations, where the majority of the eigenvalues (the last
Mx My − l eigenvalues) were close to 1, were considered in [24]. These estimations are
based on the analysis of max{|λi − λ j |, i ≤ j ≤ l }/|λi |, So, it is important to know the
distribution of the firstl eigenvalues of the preconditioned matrix. An effective numeri-
cal procedure for this analysis was proposed in [13]. To rapidly solve the problems (2.5),
(2.6) for many frequencies, we have used an extrapolation from several previous frequen-
cies as a first approximation for the next one. Specifically we used extrapolation formulas
from 1st to 4th order. We will report on the effectiveness of this approach in the next
section.

4. NUMERICAL RESULTS

The above algorithm was implemented in FORTRAN 77 using complex double precision
arithmetic on a Silicon Graphics Origin 200, using one processor. In the tests below the
geometrical sizes are given in meters. The ranges of the parametersω, εr , and tan(δ) are
as in [8, 26]. We choose the frequency range to beω∈ (0.5, 2) GHz. For this choice of
frequencies we obtain the following values of the electrical properties:
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TABLE I

Electrical Parameters

εr tan(δ) k2(ω = 1 GHz)

Air 1 0 439.2
Dry soil 2.9 0.025 1273+ 31i
Wet soil (5% moisture) 4 0.22 1756+ 395i
TNT 2.86 0.0018 1256+ 2.26i

µ = 4π × 10−7 Henry

m
,

ε0 = 8.854× 10−12Farad

m
.

The values of the electrical parameters in Table I are taken from [26]; the values ofk2

are non-dimensional.

4.1. Two tests verifying convergence on a model problem.In the first two tests we
consider the convergence of the algorithm on a sequence of grids. The source function
f was selected such that the true solution wasv(x, y) = φ(x) · φ(y), whereφ(x) =
exp(ik0(x + a)) + exp(−ik0(x − a)) − 2. Note that the analytic solution satisfies the
radiation boundary condition (2.6). The error isreportedas the relative maximum norm
r n
∞ = ‖V (n) − v‖∞/‖v‖∞, and the iterative process is stopped when theinitial residual

is reduced by a factor of 10−7. Actually in our numerical experiments it would have been
sufficient to stop the algorithm when the initial residual is reduced by 10−5, because after this
value was achieved, the difference between the analytic and numerical solution remained
essentially the same. In these experiments we used the domainÄ = (−50 cm, 50 cm)2 and
zero initial values were assumed. In the reportage of this sectionN0 is the iteration number
when the convergence criteria was first satisfied and TP is the total time in seconds.

In Table II, we report on the numerical results for the propagation of waves in a non-
attenuating media, i.e.,k2 ≡ 439.2. It should be noticed that the number of iterations holds
roughly constant as the mesh sizeh decreases, a behavior similar to multigrid at its best.
This has important advantages for large-scale problems.

Next, we consider a case using an uniform background (without interface) with two
inclusions. The parameters of the background in this test correspond to dry soil, where
k2 = k2

0 outside of two circular abnormalities, one of which models a mine and the other an
air gap. The radius of each abnormality is 5 cm. The distribution ofk2 in the first inclusion
corresponds to TNT (trinitrotoluene) and in the second inclusionk2 corresponds to air. Thus

TABLE II

Results of Numerical Experiments for the First Test

Grid r (n)∞ N0 TP(s)

99× 99 9.89× 10−3 7 0.5
199× 199 2.61× 10−3 8 2.2
399× 399 6.73× 10−4 8 9.8
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TABLE III

Results of Numerical Experiments for the Second Test

Grid r (n)∞ N0 TP(s)

99× 99 9.96× 10−3 11 0.6
199× 199 2.60× 10−3 11 2.7
399× 399 6.73× 10−4 11 10

k2 can be represented in the form

k2 =


1273+ 31i, for (x − xi )

2+ (y− yi )
2 > r 2

i , i = 1, 2

1256+ 2.26i, for (x − x1)
2+ (y− y1)

2 ≤ r 2
1,

439, for (x − x2)
2+ (y− y2)

2 ≤ r 2
2,

(4.1)

where(x1, y1) = (0, 15) cm, (x2, y2) = (0, 40) cm, andr1,2 = 5 cm are the centers and
radii of the first and second inclusions, respectively.

We see several interesting results from Table III: The method converges rapidly, in each
case always taking just 11 iterations/run. The CPU time is roughly proportional to the
number of unknowns. Again, the error is clearly 2nd order as should be expected.

4.2. A target in wet soil containing TNT.In the third series of tests we compute the
response to a mine-like target (TNT) in wet soil. We use ranges of parameters as above.
Mine-like targets were embedded withinÄ ∩ {y > 0}. The domainÄ ∩ {y < 0} consists
of dry air. We choose the functionk2 as

k2(x, y) =


439.2, for y < 0

1756+ 395i, for y > 0, (x − x1)
2 ≤ (y− y1)

2 > r 2
1

1256+ 2.26i, for (x − x1)
2+ (y− y1)

2 ≤ r 2
1

(4.2)

wherex1 = 0, y1 = 20 cm,r1 = 5 cm.
Hence the first two rows in (4.2) correspond tok2

0, and the third one is due to a mine-like
target, which we model as a circle with center at(x1, y1) = (0, 20) cm, and with radius
r1 = 5 cm. The values of the parameterk2

0 correspond to air fory < 0 and to 5% moisturized
sand fory > 0. The frequencyω = 1 GHz was chosen here. The value of the parameterk2

within the target corresponds to trinitrotoluene (TNT) (see Table I). In all cases 19 iterations
were required for convergence, without regard to details.

Figures 2 and 3 show a contour plot of the amplitude and phase over the domain
(−106 cm, 106 cm)2 using a computational grid of size 399× 399. Horizontal lines at
the detector regiony = −10 and the interface liney = 0 were added, as an aid to interpre-
tation. In these two plots we made an exception to our usual convention, and placed air in
the upper half plane. In addition a circle was drawn in the soil showing the land mine. In
the amplitude contour plot, two levels of contour lines were used: One fine set for the very
small amplitudes away from the land mine, and one coarse set for the region near the land
mine, where there is rapid growth. The phase contour plot shows many interesting features
and structures. The phase changes from−π to π radians between each set of dark bands,
which are roughly centered at the land mine. The bands are wider in the air and narrower
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FIG. 2. Contour plot of the amplitude of the functionv in Test 3 at 1 GHz.

in the soil. Two new bands begin near the interface and go into the soil. Examination of a
larger domain (not shown) shows that additional bands such as these were not generated,
but other structures emerged. We have found the systematic structure of these contours to
be most interesting.

One important issue in the numerical solution of scattering problems is the influence
of the size of the computational domain on the quality of the solution. To ensure the
accuracy of the solution we should verify that the size of the computational domain does
not change the solution in the region of the interest, after a certain size. To examine this

FIG. 3. Contour plot of the phase in radians of the functionv in Test 3 at 1 GHz.
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FIG. 4. Thex-dependent distribution of the real part of the functionv for Test 3 at the levely = −10 (i.e.,
10 cmabovethe air–ground interface). The solid, dashed, and dotted lines display the cases of{−53 ≤ x, y ≤
53} cm, {−106≤ x, y ≤ 106} cm, and{−212≤ x, y ≤ 212} cm domains, respectively.

we considered 3 different computational domains(−53 cm, 53 cm)2, (−106 cm, 106 cm)2,
(−212 cm, 212 cm)2, using grid sizes of 199×199, 399×399, and 799×799, respectively.
The parameters of the background and the inclusion as well as the position of the inclusion
were fixed. Figures 4 and 5 display the distribution of the real part of the functionv 10 cm
above the ground surface and at the ground surface(y = −10, 0.0 cm). One can observe

FIG. 5. Similar to Fig. 3, but at the levely = 0 (i.e., on the air–ground interface).
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the excellent agreement between these distributions over the smallest comparison region
[−53 cm, 53 cm]: There is a slight difference at the inner peaks for the smallest computa-
tional domain, but agreement over the next two domains. Similar plots were obtained for the
imaginary parts of the functionv. Comparison of both real and imaginary parts for regions
in the ground, such asy = 10 or 20 cm, shows exact agreement, to graphical accuracy, and
increasing values for the peaks.

4.3. A target in wet soil containing a mixture of TNT and air.The goal of the fourth
test was to compute thefrequency dependentresponse for detectors placed on the ground
for two different types of mine-like targets. Recall that we need such a response as an
input for the solution of the inverse problem. It is well known that air often composes
from 10 to 30% of a mine. The rest of a plastic mine is a TNT-like explosive. So, one
can hope that an air signature in this output signal might help to differentiate mines from
clutter. Therefore we simulate two mine-like targets. The first was a circle with radius
r = 5 cm filled with TNT and with centerx1= 0, y1= 20 cm, i.e., the same as in the second
test. The second target consists of two concentric circles with the same center of (0, 20) cm.
The radius of the first circle wasr1= 4 cm, and the radius of the second wasr2= 5 cm.
The first circle was filled with TNT, and the annulus between the first and second circles
consisted of dry air. We computed the boundary value problem (3.2), (3.3a), (3.5) for the
frequenciesω∈ (0.5, 2) GHz with the step size1ω= 0.01 GHz= 10 Mhz, thus solving
150 problems. The total time was 5 minutes using a 199× 199 grid. At each frequency
ω the initial distribution for the functionv was taken as an extrapolation from the so-
lutions at the previous frequencies. To do this, we considered extrapolation formulas of
different orders. Figure 6 shows the distribution of the number of iterations for different
frequencies using zero as the initial approximation, as well as for 1st, 2nd, 3rd, and 4th
order extrapolation formulas. Note that for the 4th order extrapolation formula, only 9–11

FIG. 6. The number of iterations for extrapolation formulas of different orders, as a function of frequency. The
top solid line uses an initial approximation of zero. The dashed, dotted, dot-dashed, and bottom solid lines represent
the improvements achieved by use of 1st, 2nd, 3rd, and 4th extrapolation formulas for the initial approximation.
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FIG. 7. Frequency dependent distribution of the real part of the functionv(x, y, ω). The solid and dashed line
display responses from TNT filled and air-TNT filled targets at a detector location of(x, y) = (0,−10) cm. The
difference in responses, especially from 1 to 1.6 GHz is evident.

iterations were required in most cases, in contrast to requiring up to 20 without use of
extrapolation.

Figure 7 displays the resulting frequency dependent curves atx = 0, y = −10, at a
detector placed 10 cm above the air–ground interface and just above the center of the target.
Solid and dashed lines correspond to TNT-filled and air-TNT filled targets, respectively.
The difference in the two responses is evident, especially between 1 and 1.6 GHz. Figure 8
shows similar curves but for a detector which is located at(x, y) = (10,−10) cm, i.e.,
10 cm to the right of the previous detector. Again a similar difference in responses can be

FIG. 8. The same as in Fig. 5, but at a detector location of(x, y) = (10,−10) cm.



114 GRYAZIN, KLIBANOV, AND LUCAS

observed. However, beginning from aboutx = 30 cm such differences are very small (these
results are not shown).

5. CONCLUSIONS

A new and rapid iterative method for the solution of the forward problem of propagation
of high frequency GPR signals using Sommerfeld-like boundary conditions over regions
with small inclusions was developed and computationally implemented. A typical time to
produce the frequency dependent response over 150 frequencies on a 199× 199 grid was
just 5 minutes on a Silicon Graphics Origin 200 using only one processor, as contrasted to
about 6 hours in the case of Gaussian elimination like methods.

The method was tested for realistic parameter ranges. The influence of the truncated
region on the numerical solution of the scattered problem for the Helmholtz equation with
Sommerfeld-like boundary conditions was investigated. Interesting features of the ampli-
tude and phase distribution were shown and reported. It was found that the frequency
dependent output signals for two types of mine-like targets, (1) one filled only with the
TNT, and (2) one filled with both TNT and dry air, were significantly different. Given that
mines contain from 10 to 30% of air, and stone-like clutter likely does not contain air, this
may well help to differentiate mines from clutter (along with other similar parameters). The
authors intend to use the developed code to simulate data for the inverse problem, which
will be solved by the elliptic systems method [10, 19, 20].

ACKNOWLEDGMENT

This material is based upon work supported by the U.S. Army Research Office Grant DAAG 55-98-1-0401.

REFERENCES

1. A. Bayliss, C. Goldstein, and E. Turkel, An iterative method for the Helmholtz equation,J. Comput. Phys.
49, 443 (1983).

2. J. Berenger, A perfect matched layer for the absorption of electromagnetic waves,J. Comput. Phys.114, 185
(1994).

3. J. H. Bramble, J. E. Pasciak, and J. Xu, The analysis of multigrid algorithms for non-symmetric and indefinite
problems,Math. Comp.51, 389 (1988).

4. B. L. Buzbee, F. W. Dorr, J. A. George, and G. H. Golub, The direct solution of the discrete Poisson equation
on irregular regions,SIAM J. Numer. Anal.8, 722 (1971).

5. B. L. Buzbee, G. H. Golub, and C. W. Nelson, On direct methods for solving Poisson’s equation,SIAM J.
Numer. Anal.7, 627 (1970).

6. M. Cheney and D. Isaacson, Inverse problems for a perturbed dissipative half-space,Inverse Problems11,
865 (1995).

7. B. Despres, Domain decomposition method and the Helmholtz problem, inMathematical and Numerical
Aspects of Wave Propagation Phenomena, edited by G. Gohen, L. Halpern, and P. Joly (SIAM, Philadelphia,
1991), p.44.

8. Dielectric Constant and Loss Tangent of Explosives, data of U.S. Army Belvoir RD&E Center (unpublished).

9. J. Douglas, Jr., J. L. Hensley, and J. E. Roberts,Alternating-Direction Iteration Method for Helmholtz Prob-
lems, Tech. Report No. 214, Mathematics Department, Purdue University, West Lafaette, IN, 1993.

10. Y. A. Gryazin, M. V. Klibanov, and T. R. Lucas, Imaging the diffusion coefficient in a parabolic inverse
problem in optical tomography,Inverse Problems15, 373 (1999).



GMRES COMPUTATION OF ELECTRICAL FIELDS 115

11. Y. A. Gryazin, M. V. Klibanov, and T. R. Lucas, Tomographic images of land mines by the elliptic systems
method using GPR: Efficient solution of the forward problem, inProc. of the International Society of Optical
Engineering (SPIE), Detection and Remediation Technologies for Mines and Minelike Targets IV(1999),
Vol. 3710, p.875.

12. H. C. Elman and D. P. O’Leary, Efficient iterative solution of the three-dimensional Helmholtz equation,J.
Comput. Phys.142, 163 (1998).

13. H. C. Elman and D. P. O’Leary, Eigenanalysis of some preconditioned Helmholtz problems,Numer. Math.
83, 231 (1998).

14. O. Ernst and G. H. Golub, A domain decomposition approach to solving the Helmholtz equation with a
radiation boundary condition, inDomain Decomposition in Science and Engineering, edited by A. Quarteroni,
H. Periaux, Y. Kuznetsov, and O. Widdlund (Amer. Math. Soc., Providence, 1994), p.177.

15. W. Joubert, T. A. Manteuffel, S. V. Parter, and S.-P. Wong, Preconditioning second-order elliptic operators:
Experiment and theory,SIAM J. Sci. Statist. Comput.13, 259 (1992).

16. M. Kilmer, E. Miller, and C. Rappaport, Preconditioners for structured matrices arising in subsurface object
detection,SIAM J. Sci. Comput., in press.

17. S. Kim, A parallizable iterative procedure for the Helmholtz problem,Appl. Numer. Math.14, 435 (1994).

18. S. Kim, Parallel multidomain iterative algorithms for the Helmholtz wave equation,Appl. Numer. Math.17,
411 (1995).

19. M. V. Klibanov, T. R. Lucas, and R. M. Frank, A fast and accurate imaging algorithm in optical/diffusion
tomography,Inverse Problems13, 1341 (1997).

20. M. V. Klibanov, T. R. Lucas, and R. M. Frank, Image reconstruction from experimental data in diffusion
tomography, inComputational Radiology and Imaging, Theory and Diagnostics, edited by C. B¨orgers and
F. Natterer, The IMA Volumes in Mathematics and Its Applications (Springer-Verlag, New York/Berlin, 1999),
Vol. 110, p.157.

21. T. A. Manteuffel and S. V. Parter, Preconditioning and boundary conditions,SIAM J. Numer. Anal.27, 656
(1998)

22. E. Marengo, C. Rappaport, and E. Miller, Optimum PML ABC conductivity profile in FDFD, submitted for
publication.

23. N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, How fast are nonsymmetric matrix iterations,SIAM J.
Matrix Anal. Appl.13, 778 (1992).

24. C. W. Oosterlee and T. Washio, An evaluation of parallel multigrid as a solver and a preconditioner for
singularly perturbed problems,SIAM J. Sci. Comput.19, 87 (1998).

25. W. Proskurowski and O. Widlund, On the numerical solution of Helmholtz’ equation by the capacitance
matrix method,Math. Comp.30, 433 (1976).

26. Permittivity and Conductivity for Sandy Loam for Various Moistures, data of U.S. Army Belvoir RD&E Center
(unpublished).

27. Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric
linear systems,SIAM J. Sci. Statist. Comput.7, 856 (1986).


	1. INTRODUCTION
	2. STATEMENT OF THE BOUNDARY VALUE PROBLEM
	FIG. 1.

	3. THE NUMERICAL METHOD
	4. NUMERICAL RESULTS
	TABLE I
	TABLE II
	TABLE III
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.

	5. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

